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ABSTRACT

A model is developed for the failure time of a bundle of fibers

subjected to a constant load . At any t ime , all surviving fibers share

the bundle load equally while all failed fibers support no load . The

bundle may collapse immediate].y or fibers may fail randc*nly in time,

possibly more than one at a time . The failure time of the bundle is

the failure t ime of the last surviving fiber. For a single fiber , the

c.d .f.  for the failure time is assumed to be a specific functional of an

arbitrary load history . The model is developed using a quantile process

approach . In the most important case the failure time of the bundle

is shown to be asymptotically normal with known parameters . The bundle

failure model has the features of both static strength and fatigue

failure of earlier analyses, and thus is more realistic than earlier

models .

FIBER BUNDLE; TIME TO FAILURE; LOAD SHARING; WEAK CONVERGENCE;

QUARTILE PROCESSES
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1. INTRODUCTION

- 
1 Consider a bundle of n fibers to which we apply a nonnegative, time

dependent load R.5(t), t > 0. As time passes, fibers fail in a random manner

that depends on their individual load histories. We let T < ... < T be the1—  — n

or~~red failure times of the n fibers and designate T~ as the bundle failure time.

Bundle loading assumptions. The bundle load program is defined as

£(t )  = L5~t )~~ , t > 0 , but the actual load that each fiber carries may differ

from L( t )  because the load on a failed fiber is shifted to its survivors

according to a specified rule • The equal load sharing rule is assumed in this

study wherein all surviving fibers at time t share the load equally . Thus , we

define the actual fiber load program Ln as the random process

£(t)/(l—i/n) for T~ < t  < ~~~~ and i 0 ,...,n—l

(1.1) L~(t) =

0 for T < t ,

where T0 
0. Each fiber is subjected to Ln(t) up to its time of failure. A

large portion of this study will be devoted to studying bundle failure under

the constant load program £1(t) = L , t > 0 where L is a positive constant.

Generally, -we will assume £ (t ) ,  t > 0 to be continuous.

Assumptions on single fiber failure. We assume that fibers are sampled

independently from a common source • Under the known arbitrary load program

A(t), t > 0 a single fiber has random failure time T with cumulative distribu—

tion function (c .d.f.) F(tIA), t > 0 which is a nonanticipating functional of

A. Though some results will be obtained for general F(t~A ),  most of the study

will involve the specific Thn~tional

(1.2) F(tIA) = sup { ‘ V ( X ( t ) ,  f ~ K(A (S) ) ds ) }
0<_t~•t

a - — — - -———-~ 
.____.. _ ____~a_-.- .——— -— - -.---— --- . - - — . -.--——-.-- - -——— -  ‘..-.--- - , -  - - - — -—



.,- 
~~~~~~~~~~~~~~~~~~~~~~~ 

- —
~~
—

~~~~~ T ‘~~~~‘ 1 7  ~~~~~~~~~~~~~~~~~~ - .- , -m~
......,_. w, .,.. ,. ..,,._

~~~~~~~~~~~~~~~~~~~~

2

where i (x) and ‘V(x,z) are functions with the following special properties.

The function K (x) , x > 0  is ~.s~ u aed tu be .~ontinuuue, inoreatt.ii*g ~uu1

unbounded and to satisfy K(X) > 0 for x > 0. We call. K (X) the breakdown rule.

An example of practical interest is the power law breakdown rule

(1.3) K
1
(x) = x~ for x > 0,

where p is a positive constant. Later, we further restrict the behavior of

K(x) in order to obtain asymptotic results for bundle failure.

The function ‘I~(x ,z) is called the shape function and we assume it to be

increasing and joint ly continuous in x > 0 and z > 0, and to satisfy ‘V(o ,o) = 0.

Jso,we assu me ‘~‘(x ,z)  < i for x O  arid z O  and ].im ‘V(x,z) = l for a l l z > 0

or u r n  ‘V(x,z) 1 for all x > 0. Later we further restrict the behavior of ~‘V

in order to obtain asymptotic results for bundle failure. An example of ~V of
4

practical interest is

(i. li ) ‘I~1(x ,z) = l_exp {_(xr 
+ z)s} for x > 0 and z > 0 ,

where r and s are positive constants.

In recent models for the fatigue failure of materials, c.d.f.’s for the

failure time arise which are of the form of (1.2). In fact (1.2) with (1.3)

and. (i.~) is a specific example . In such models,fatigue cracks grow in length

within the material and their growth depends on the load through the integral

contained in (1.2). The strength of the material depends on the length of the

longest crack and failure occurs when the load exceeds the strength or the strength

decreases below the load for the first time . For periods where the load is

decreasing, material strength may decrease less severely so that failure will not

occur during that period. Thus, the “sup” in (1.2) arises as a result of these

situations and is necessary to ensure that F(tlA ) is increasing in t.

- ~~~~~~~~~ - -- - -



.
~~~ 

- ,,. ,
~
. -

3

We will, speak of the distribution for the initial strength of the fiber

(1.5) ~‘(x) ‘V(x ,O ) ,  x > 0

Under the load program L1(t) = L , t > 0 observe that ~(L) is the probability

that the fiber fails at time zero or alternatively that its initial strength

is less than or equal to the constant L. When ‘V = ‘Vi,, then P(x) is the Weibull.

distribution. Generally ~(x), x> 0 may not be a proper c.d.f. We will also

speak of the distribution for the time to failure of the fiber in static fatigue

(1.6) F ( t I L1) = ‘V(L ,K(L )t)  for t > 0.

Note that F(01L1
) = P(L) and that there may be a positive probability that the

fiber fails immediately upon application of th~ load L. Under our assumptions,

either P (z) or F(tIL1) is a proper c.d.f.

Our interest in this paper will be primarii,y in load programs which are

• increasing. In such cases we may drop the “sup” in (1.2) and take ~r = t. The

integral, in (1.2), which we call the fatigue integral, provides for the time

dependent fatigue of the fiber , with K influencing the rate as the load changes .

It may be shown that (1.2) yields a probabilistic version of the well—known

Miner’s fatigue rule. A main feature of (1.2) is that F(tIA) is sensitive to

the instantaneous value of the load A. Consequently jumps in A( t )  may result in

corresponding jumps in F. Note that the function ‘V governs the shape of the

distribution for initial strength ~(x) and of the distribution for time to

failure in static fatigue F(tfL1). Also ‘V governs the interactive influence on

~~
. 

-

~ 
~ F of the instantaneous value of the load and of the fatigue integral. If ‘V(x,z)

is a function only of x , the fibers are called classic fibers and do not fatigue

with time. Their strength distribution is P(x) which of course is time independent.

For example, classic fibers are obtained that have a Weibull distribution for

strength when y is deleted in (i.4).

- - - - ~~~~~~~ - .‘--. —• - —.~—.---- • ---—----~-—-----•----•-----.—- - - 
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Previous bundle analysis. The model studied earlier by Phoenix (1978)

( under assumptions which were proposed. by Coleman (1958)) is a special case of

the present model . Specifically , the shape function ‘V(x,z) was considered. to

be only a function of z. Consequently F ( t I A )  remained continuous in t under step

increases in X(t )  (although the slope of F at such times often increased drastically).

Consequently fibers in the loaded bundle failed one-at—a—time, though generally

• at an accelerating rate. But more irnport ant ,the model was incompatible with the

classic (static) model for fiber bundle strength investigated in depth by Daniels

(1911.5) for which ‘V(x,z) is only a function of x. For a classic bundle, a linearly

increasing load program ~.(t) may result in more than one fiber failure at some

t ime . This occurs because a shift of the load of a failed fiber to its survivors

may cause some of the survivors to fail also , as their strengths are exceeded.

At some time the classic bundle will collapse as the remaining survivors fail

simultaneously .

Our bundle failure model has the features of the Daniels classic model and

the Coleman time dependent model . A typical evolution of the bundle failure

process under the constant load program £1(t ) ,  t > 0 will be that some fraction

(perhaps all) of the fibers will fail at time zero upon application of the load

(Daniels bundle feature). As time passes single fibers will fail (Coleman feature)

perhaps triggering instantaneously one or more additional failures as a result

of the load jumps (Daniels feature). The result is that ties will occur among

the fiber failure times. At some time, the remaining fibers will fail simultan-

• eously as the bundle collapses catastrophically (Daniels feature).

In this paper we formulate a model of the bundle failure process whose

statistical. properties will be equivalent to those of the bundle as originally

described. This model will be called the guantile model because the time to

failure of the bundle T will be expressed in terms of the uniform quanti].e

• process. In fact, for the constant bundle load program 2.1(t) we will obtain T1

~-J. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ,• - 
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.1 for I = 1, ..., n as a functional of the uniform quantile process. Under broad

assumptions we will demonstrate asymptotic norma].itj for the bundle failure

time T using techniques of analysis adapted from Shorack (1972a and b ) .

An example of engineering relevance -will be discussed to highlight the

main differences between the model of Phoenix (1977) and the more general model

considered here . But first we consider on a heuristic basis some examples of

• inf.inite (n-sw) bundles . These will illustrate several of the features of the

I bundle failure process and will provide mot ivation for the exact and asymptotic

analyses -which follow.

I~
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2 • INFINITE BUNDLE ANALYSIS

~L’onsider an iutlxiite.Ly ~~~~~ bw~U~ (i~~~ ’) i un is ~u Je~t~~* t i  u~ ~~~~~
• • load program £1(t)  = L , t > 0. (The actual load on the bundle is £5(t) = nL

which is,of course,infinitely large). Upon application of the load L, at time

zero, the fraction y1 = P(L) immediately fails being unable to support L. (Recall

that P(x) given by (1.5) is the initial strength distribution of the fiber.)

Iimnediately,the load on each surviving fiber jumps to L/(l—y
1
) arid the fraction

of failed fibers increases instantaneously to y2 P(L/(l—y1)). This process

continues at time zero and after the mt~. round, the fraction of failed fibers is

= P(L/(l_Ym i
))
~ 

In Figure 1 we give an example and. illustrate four possibili-

ties associated with the load levels L1, L2, L3 
and L respectively. For

L = L1 we depict the generation of the sequence y1, y2
, ... and note that

y + y
~ 

< 1 as m 9’ ~ so that y~ becomes the stable fraction of fibers that fail

at time zero. On the other hand, if L = L 2 we h a v e y ÷ l a sm + w s o thatall

the fibers fail at time zero. But for L = L no fibers fail and y = 0 for all3 —  m
m . The critical value of L is the load L for which the curve P(L /(l—y))

* *touches (at y = y ) but does not cross the curve y . Thus for loads exceeding L

the bundle collapses . Now Daniels (l91~5) demonstrated that under reasonable

assumptions on P (x) the strength of a classic bundle is asymptotically normally

distributed with mean = sup{x(l-~(x)); x > o} and variance which decreases

as 1/n (see Phoenix and Taylor (1973)). Taking x as the point (assumed unique)

where the function x(l-P(x)), x > 0 achieves its maximum we find indeed that

* * * * —lL = 1
~m~~ 

and x = L /(l—y ). Also the fact that the variance decreases as n

supports our heuristic approach. Thus,we have the following situation at time

zero. We have L > 0 as the smallest value of L for which ~(L/(i—y)) > y for

all y, if this value exists or take L = ~ otherwise. We call L the Initial

collapse load for the infinite bundle. We have y~ E[O,l] as the smallest value

of y > 0 for which ~(L/(l-y)) = y and cal]. y~ the initial fraction of failed

_________________________________________________________________________________________ — ~~~~~~~~~ .-
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fibers In the infinite bundle. As an example If ‘V = ‘V1 we fi nd that ~‘(x) is

the two parameter Weibull c .d.f .  with shape parameter rs. We obtain

(2.1) L* =

and y~ as the smallest value of y > 0 satisfying

(2.2) 1ogC~~-4 = 
L

*when L < L ,and y1 = 1 otherwise .

Let y(t), t > 0 be the fraction of failed fibers at time t. Since failed

fibers cannot repair themselves, y(t) will be increasing in t > 0 and will

• satisfy y(0) = y~. If y(t) becomes unity for finite t, we define the bundle

failure time t (i) (for infinite bundles) as

(2.3) t~(l) = inf{t > 0; y(t) = l}

Otherwise t~(l) is taken as infinity. As time passes, equilibrium is maintained

and we argue that y(t), t >0 must satisfy the integral equation

(2.~) y(t) = ‘V(L/(l—y(t)), f ~ K(L/(l—y(T))dr)

where for all t > 0, y(t) is the smallest possible value. Note that each fiber

of the bundle is subjected to L/(l—y(t)) up to its time of failure and by (1.2)
• the right hand side of (2.1~) -will be the fraction of fibers that has failed up

4 to time t. For tw(1) to be finite -when 0 < L < L* we require ‘V(L,z) + 1 as z +

and ‘V and ic together will be required to have special properties.

• ••• ~~~~~~~~~ .~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .S.__~~~~~~_ .S _AL • • ~~~~~~~ — ‘~~_ ‘ f •  • F • - -
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I
Given 0 < y < 1 and x > 0 let ‘V~ ’(x,y) be the largest value of z satisfying

- 

‘Y(x,z) = y, if such a value exists and let ‘V’1’(x,y) equal zero otherwise. Note

that ‘V(x,z) may be viewed as a c.d.f. in z > 0 given x > 0 and that ‘V”1(x ,y) is

its inverse in y. Observe also that ‘V (x,y) is increasing in 0 < y < 1, is

• decreasing in x > 0 , and is jointly continuous in both variables. For example

1 
[log(~~~ ) J ~’~ - for 0 < y < 1 and 0 < x < [1og(~~~~)] Th

( 2 . 5)  ‘V1 (x,y) =

0 , otherwise.

Proceeding with the solution to (2.14) for 0 < L < L we rearrange (2. 14) to

obtain

(2.6) J~ K(~~~~~~~~)dT = g ( y ( t ) )

where

(2.7 ) g(y )  = ‘V~~’(L/ ( l-y) ,y) for 0 < y < 1

• and (2.6) holds for soma range of t .  Now the left hand side of (2.6) is strictly

increasing in t > 0 by the nonnegati’v’ity aseuj~ption of K , but the behavior of ,

• • 
g(y) is more complex. Although ‘V~~’(x ,y) is increasing in y, it is decreasing in

x. But we also see that g ( y ) > O fo r 0 < y < l i f and on],y if~~ (L/ (1_y)) < y.

Thus for 0 < y < y ~ we must have g(y) = ~~ For y > y~ we find that g(y) is not

necessarily increasing. We restrict the behavior of g(y) as follows: Assume

• that given 0 < L < L there exist point s 0 < y~ < y~ < y
~ < 1 such that g(y ) is

• Is zero on f0,y~), is strictly increasing on [y~, y~
), is strictly decreasing on

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
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c [y~, y~) and is zero on [y~, 1). Possibly y~ = 0 and. possibly y~ = 1. Also

may be zero or one as well. These restrictions on the behavior of g(y)

turn out to be mild from a practical point of view. Returning to (2.6) we may

write

( 2 . 8 )  dt = $(y(t))dg(y(t)) for < y < y~

where

(2.9) 4 (y)  = l/K(L/(] .—y ) )  for 0 < y < 1

and. t = g(y~)~(y~) at y = y~. (When y
~ 

= 0 we may have g(y~) > 0 but for y~ >0
- 

• we have g(y~) = 0.) Henceforth we restrict • to being right continuous on [0,1).

Denoting t~(y) as the solution, we integrate (2.8) to obtain

• (2.10) t~(y) = q(z)dg(z) + g(y~ )$(y~ ) for y~ < y < y~

• I which is a relationship between time t and the fraction of failed fibers y up to

The signifIcance of y~ < I. is that when y(t ) reaches y~ , the bundle collapses

instantaneously as y(t) jumps to one. We call y
~ 
the collapse fraction . This is

seen from the fact •that the right hand side of (2.6) can grow no further while

• 
the left hand side continues to grow . Indeed (2.6) is no longer applicable and

y(t) = 1 is the only solution to (2.14) beyond. this time. Now for L L we note

• that g(y) = 0 for 0 < y < 1. Thus the fraction of failed fibers y(t) becomes y

a t t = O a n d Is one fort>O. Hence,

# # *1 
~ 

•(y~~g(y) + ~(y1)g(y1) for 0 < L < L ,

y1
(2.11) t (i) =

*0 for L < L .

- ~~~~~~~ • ~~~~~~~~~~~~~~~~ • .-.-•-,- ‘-— -~~--
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1 Letting g#(y) = sup{g(r); 0 < c < y} we integrate by parts in (2.10) and

• obtain by the above discussion the time to failure of the fraction y

• (2.12) t~(y) = — J ~j  g
#(min (z,y))dqi(z) for 0 < L and 0 < y 

~ 
1

• where we use the fact that 4(y) + 0 as y + 1 (by our assumptions on K). Note that

t~(y) = tw(l) for y~ < y < 1. Before discussing an example,-we point out that

t (i) will be found to be the mean of the asymptotic distribution of the bundle

failure time Tn when n grows large. Additional restrictions that we impose on

4 and g will be mild . We also point out that tw(l) Is fi nite if g(y) is

bounded since ~(y) is always bounded. On the other hand if g(y ) grows unbounded

in y (so that y~ = 1) we see from (2.11) that tw(1) may not exist . Later,

reasonable restrictions on 4’ and g will foreclose this possibility. Note as well

that in the model of Phoenix (1978) ‘V(x,z) = P(z),a function only of ~~. Thus,

• g(y) = r ’1(1) the inverse of ‘V, the initial failed fraction y~ is zero, the
# *collapse fraction 
~2 

is one, and L =

In Figure 2 we have illustrated some features of ‘V~
1(x ,y) given by (2.5).

Above the line x = [log(l/(1_y))]1~
’
~~
5),which is the inverse x = F’1(y) of the

initial strength distribution ~(x), we see that ‘V~ ’(x,y) is zero. Also we see

• that ‘V~~(x ,y) is jointly continuous in both x > 0 and 0 < y < 1. Now g(y) is

‘V~ (x ,y) evaluated along the line x = L/ (l—y). We compute for 0 < L < L that

0 f o r O < y < y ~ and y~~< y < 1 ,

(2.13) = 

1 1/s L r• [lo~(~~—)] - for y
1 ~~ , y < 13 ‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_
~~~~~~~~~~~ • - ••-~•-•• -•-——.



where L was given before by (2.1) and y~ and y
~ are the smallest and largest

solutIons respectively to (2.2). The value L* and. the associated tangent point

* *y are easlly visua].ized and f or L >L  we see g(y)=O foro<y< l. For

0 < L < L the function g#(y) is

g(y) for 0 < y < y 2
(2.114) g#(y) =

g(y~) for y~~< y < l

where y
~ 
is the positive solution to

r
(2.15) [log(~~—)) 

S 
= rs(~~L)

Also g#(y) O f o r L > L *. ~~idently fo r 0 < L < L
5 

we have0< y~~< y~~<y~~< 1,

and the behavior of g (y) is typical. Thus, we find that if L > L the bundle fails

immediately. But if 0 < L < L ,a positive fraction y1 of fibers fails at time

• 
• zero. As time passes , fibers fail smoothly until the fraction y~ has failed when

the bundle suddenly collapses. For this example , if we assume the power law

breakdown rule K1
(x) = x~ , we find that

(2.16) 4)(y) = L~~(1—y)~ for 0 < y < 1.

-
: Clearly tw(i) as computed by (2.11) or (2.12) is finite for all p > 0. But if

the direct load sensitivity feature is removed as in Phoenix (1978) and ‘V1 is

replaced by l—exp{—z8} for z > 0, we find g(y) = g#(y) = log~~~~)
hh’5 for

0 < y < 1 and essentially the first term in (2.13) is retained with y
~ = 0 and

• y~ = y~ 1. Again tw(l) Is finite for all p > 0 though the asymptotic distri—

bution results there required p >1. Evidently the load sensitivity feature

~ I 
will reduce the magnitude of tw(l) substantially when L nears L

*.

I

1. ~~~~. . • • ~~~~~~~~~~ 
.
~~~~~~ ~~~~~~~~~~~~~~~~~~ - 



¶ ~T --— -- — --
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• 12

In the foregoing heuristic analysis we have introduced several quantities,

• and established some import ant features of bundle failure through the use of an

example. Later we investigat e the asymptotIc distribution of T ,the bundle

failure time, and these as well as other quantities will arise. Further assump—

tions vii]. be made along the lines of those made heretofore. These assumptions

are rather innocuous in applications yet the proofs are kept as straightforward

as is practicable. Certainly (2.12) holds for g for which there are more than

two intersections of the functions ~(L/(l—y))and y on [0,1). However, such

situations are rare in applications and only serve to complicate the proofs. 

— —-• - -- - - - - I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - — - - — -~~~~— -  
‘

— -—— -—
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3. THE QUANTILE MODEL OF BUNDLE FAILURE .

We formulate a model of bundle failure whose statistical prop erties viii be

equivalent to those of the bundle as originally described. With the n fibers we

associate the ordered sample V1 < ... < V  from the uniform distrIbution on (0,1].

Associated with the sample is the random process

V1 for (i—l)/n < y  < i/n and i1 ,...,n,

(3.1) ç’(ï) =

V for y = 1,

and the uniform quantIle process

(3.2) V (y) = 1~ (F~~’(y)—y ) for 0 < y < 1.

• We assume the bundle load program L(t), t > 0 to be nonnegative and contin—

uous. We recall that F(tIA), t > 0 was the c.d.t. of the time to failure for a

single fiber given an arbitrary load history A (t), t > 0. We also recall that

F(tIA) was a nonanticipating functional of A.

Let L~~0 ( s )  = £(s) for s ~ 0 and let

L(s)/(1—(j—1)/n) for T~_1 < 8 < and ji,...,i

(3 .3) L~,1(s) 
=

£(s)/(i—i/n) for T , < s.

, ,
• Nov set T0 E 0 and generate the quantile model failure times T1 < ... < T

by

• (3. I e) T1 inf(t ~~~~~~~ F ( t I L ~ ,1..,1) ~ v1}

— • - • —- • - 
-- - \ .•~~
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when such a value exists and set T1 = ~~ otherwise • Thus ,we have the failure

times T1 < ... < T ~ in terms of the uniform order statistics V1 < ... < V

and later we will see that ~j~~ randcm vector ~~~~~~~~~~ g~~~~~randomi veptor

(T1,. i~T~ ) have ~~~~~~~ . same distribution.

When 2. is the constant load program I.1(t) = L, t > 0 and F(tIA) is given

by (1.2), we may express T1,...,T explicitly in terms of V1,. ..,V .  This forms

the basis for studying the asymptotic behavior of the bundle failure time for

this important case . We have T0 = 0,

(3.5) T1 inf{t ~~T1_1; ‘V (L~~1.1(t ) ,  1~ ic (L 
~~~~~~~~ ~~Vj }

• where L replaces £ (s)  in (3.3) and L~~0 = L. B~r our assumptions T; < ... < T~ -

•

-
• ‘ are finite when V1 < < Vn < 1. We restrict our attention to the fatigue

case where ‘V(x ,z) + 1 as z + ~~~, and assume for technical simplicity that ‘V(x,z)

is strictly increasing in z > 0. Thus given 0 < y  < 1 and x > 0  we now have

‘V~~(x ,y) as the value z > 0 satisfying ‘V(x,z) = y when such a value exists , and

0 otherwise. Thus,’V~~ is nonnegative. Now let

(3.6) w . = ‘V~~ ( nL/ (n—i +l) , v1) for i=l,...,n

and associate with the W1
1s the random process

• W. for (i—l )/n <y < i/n and i l ,...,n ,
(3.r) w (y) = 

1

• W fory l.

Note that W (y) is nonnegative on (0,1]. Let

• 
~~~~~~~~~~~~~~~~~~~ - • - - .  

— 
~~—
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(1—1)/n for ( i—1)/n < y  < i/n and i ] ,...,n

(3.8) ~~~ =

(n— l)/n for I = 1

and observe that

(3.9) W (y) = ‘V~~(L/(l—y (y)), r~~(y)) for 0 < < 1.

• Of major importance is the random process

(3.10) W~(y) = SUP{W~(T); 0 < t < y }  for O < y < l .

Note that W~~r) may differ from W~(~) ~ince the latter ~s not necesBarily- increa..

sing in y. We may express the failure times T~,...,T in terms of W~. Sped ! I.-

cally, we may wrIte (3.5) as

(3.11) T; = inf{t . T11 ; K(L)T1 + K(nL/(n—1))(T2 — T
1)

+ . . .+ K(flL/ (n-i+1))(t-T~~1) > W 1}

• for i 1,...,n. Inspecting (3.11) we see that P1 
— P11 > 0 if and only If

> max(W~; j ”o,...,i—i ) where W0 0 and I l,...,n. Hence we may write

= w~(o) and

4 , , Ag

(3.12) uc (nL/ (n— i+i)) (T1 — T
11

) = W”((i—l)/n) — W ((i—2)/n)
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for i1 ,.. . ,n. Now recall the function $(y) = l/K(L/(].—y)) on (o ,i) where L > 0,

• ~• and assume for technical simplicity that its derivative 4” exists on (o ,i). Thus,

we combine (3.12) for il ,...,n to yield

(3.13) T1 
= f(i~

i)/n$,~~~~~~ )d + 4’((i-l)/n)~~((j-1)/n).

Hence,ve introduce

(3.114) T~(y) = _ f
~j 4 ” ( s ) W~(sAy )ds .

where sAt min(s,t). Then

• (3.15) T~ = T~(y) for (1—1)/n < y < I/n and i1,... ,n,

since 4’(y) + 0 as y + 1. Also,we see that T~ = T~~(l) so that T (l) will be the

bundle failure time . Equation (3.14) serves as the starting point for deter-

mining the asymptotic distribution of the bundle failure time and of the time to

failure of a given fraction y of fibers in the bundle which will be T’(y). -

•

Associated with the processes Wn and W~ are the functions

• (3.16 ) g (y ) = ‘V~~(L/(l—y (y)),y) for 0 <y < 1

and

(3.17) g~(y) = sup{g (t ) ;  0 < r  < y} for 0 < y<l ,

4 both of which are nonnegative . Two normalized processes play a central role.

These are
- 

(3.18) z~(i) = & {W~(y) — g (y)} for 0 < y < 1
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(3.19) Z~(y) = & {W~(y) - g~(y)} for 0 <y < 1

Most important however , are

(3.20) t (y) = —f ~ 4”(s)g~(sAy)ds for 0 < I < 1

and T~(y) E 
~~~~~ {T~(y) — t~(~ )}. By (3.114), (3.17), (3.19 ) and (3.20) we have

(3.21) T~(y) = — f ~ 4”(s)Z~(sAy)ds for 0 < y < 1. —

The normalized bundle failure time T is defined as

(3 .22) = & {T~ — t (i)}

By (3.14), (3.19), (3.20) and (3.21) we have T~ = T~(l). The time to failure
— of the yth fractIon of fibers is defined as T~(y) and in normalized fashion

b y T~ ( y ) .

Later we will determine the asymptotic distributions for the normalized

bundle failure time T ’( i)  and for T’(y) the normalized time to failure of the

yth fraction of fibers. We will find three cases of interest depending on the

value of the applied load L relative to a critical collapse value. For the most

import ant case T’(l) and 1T~(y) will be asymptotically normal. In the next

• section we outline these cases and introduce several functions and random

• 
- processes which are important in the development. We also introduce the random

variables to which T~(i) and T~ (y )  will converge in distribution .



- j 4. LIMITING RANDOM VARIABLES AND IMPORTANT FUNCTIONS 
-

Earlier we introduced the functions ‘V and ~V
1 
. Henceforth we view

as a nonnegative and continuous function on the set S which is

(4.1) S = {(x,y); x>0 and O~y<i} . 
—

We recall ~(x) = ‘V(x,O) for x > 0 as the c.d.t. for initial fiber strength. By

our assumptions ~(x) is continuous and increasing with ~(o) = 0, but ~ may not be

a proper c.d.t. (P(x) = 0 for all x > 0 is possible). Now y = ~(x) defines a -

very important line in S since it divides S into 
-

(4 .2)  S° = {(x,y); x > 0 and 0 < y < ~(x)}

and

(4.3) = {(x,y), x > 0 and ~(x) < y < 1) . -

We let

(4.4) s°u?

and see that S is just S with the lines y = 0 and y = ~(x) removed. We find

• that ‘V 1 is zero on S° and is positive and strictly increasing in y on ?.

In the infinite bundle analysis we introduced the function -

(4.5) g(y) = ‘V
1(L/(1—y),y) for 0 < y < 1. -



~ 
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4 The behavior of g Is strongly influenced by the path in S that the line x = L/(l-y )

takes relative to the line y = ~(x). Three cases of Interest are possible depend—

ing on the value of the load L. Recall L as the load L for which the line

y = P(x) touches from below, (but does not cross) the line x = L/(1—y) at a sIngle

point in S. When such a value does not exist, we take L = ~~~ We called L

the initial collapse load.

Case I. (Applied load below initial collapse load). The line y = ~(x)

crosses the line x = L/(l—y) once or twice in S at distinct points, and elsewhere

*the two lines do not touch. Thus L < L . We let y1 be the value of y at the

first crossing and let y~ 
be the value of y at the second .crossing If the second

crossing occurs and let y~ = 1 otherwise. Note that y~ < y~ , and only for y in

(y~ , y~ ) does the line x = L/(1—y) lie in S~. Hence we have g(y) > 0 only on

(y~, y~
). We assume that a point y~ exists such that y~ 

< y~ < y~ and g(y) is

strictly increasing on [y~
, y~) and is strictly decreasing on [y~, y~). Thus for

the points 0 < y~ 
< y~ < y~ ~ 1 we have that g(y) is nonnegative and continuous —

on [0,1), is zero on [0,y~) and ;n [y~,l), is strictly increasing on [y~, y~
)

and is strictly decreasing on [y2, y3
).

Case II. (Applied load equals critical collapse load). The line y = ~(x)

touches the line x = L/(l—y) at a single point in S. We let y~ 
be the point y

of touching and we assume 0 < < 1. For this case we naturally take y~ 
= y~ = y~

and have L as the value of L. Note that g(y) = 0 for [0,1).

Case III. (Applied load exceeds critical collapse load). The lines

y = P(x) and x = L/(l—y) do not cross (or touch) in S. Thus g(y) = 0 on [0,1)
# # # *and we set y
~ 

= = 1. We must have L > L

Given ‘V , if L = °°, we have Case I for all L > 0. For some ‘I’, It is

possible for more than two crossings of y = F(x) and x = L/(l—y) to occur. For

simplicity we Ignore cases arising from this situation though extension of the

results to these is straightforward. We also ignore Case II but with y~ = 0.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-._ _ _ --w~ -~~~ -..- - ,- .-- — -•
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Cases I to III cover nearly all situations of practical importance.

Some important functions. Associated with g are the functions

(14.6) g’~
’(y) = sup{g(t); 0 < T < y} for 0 < y  < 1

and

(4 .7) # ( )  = y4y2 for 0 < y < 1.

Note that g#(y) = g(y#(y )) Let R be the set

(14.8) R = (o,y~)U(y~ ,y~hj(y~,i)

Later we will require the existence of continuous partial derivatives of ‘V
i

on 5 and we will assume regularity properties for them. Here we introduce

(14.9) g~(y) = a’V~~(x,y)/ay for y In.R
x L/(1—y)

which is the partial derivative of with respect to y evaluated along the

line x L/(l—y ) in S. It is easily seen that ga(y) is zero on (0,y~) and

(y~,1), and is continuous- and nonnegative elsewhere on R.

In the infInite bundle analysis we introduced the function 4’(y) =

on [0,1) where L > 0. By the properties of K stated earlier ,4’ is bounded,

- 
- 

continuous and decreasing on [0~i) and satisfies $(y) > 0 for 0 < y< 1. Also

4 1(y) + 0 as y + 1. Later we will require the existence of the derivat ive 4” and
- 

4 will assume certain regularity properties for 4”.
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Some important Gaussian processes. Let {V(y); 0 < y < 1) be the Brownian

• bridge with m ean zero and covariance function sAt—st. Related to V is the

Gaussian process {Z(y); IER} where

( 14.io) Z(y) ga(y)V(y) for y in.R

The covariance function for Z is

(4•n) r(s,t) = (sAt—st)g3(s)g~(t) for s and t in R,

and the mean for Z is zero. Also arising is the Gaussian process {Z(y#(y)); yER }

with mean zero and covariance function r(y#(s), y#(t))

The random variables T(yl. For Case I (L < L )  and 0 < y < 1 let

— f~ 411(s)z(y
#
(sAy))ds for 0 < y < 1 except at y =

(14.12) 1
1
(y) =

•(y1)g ~~~ 
max(V(y1),  0) for y = y1

where

(14.13) g~(y)~ lim a’V(L/(l—y),z)/az and 0 < y < z < 1.
z÷y

Also for 0 < y  < 1 let

(4.14) a2(y) = f ~ f 0
1 41 1(s1) 41 t ( s )r (y # (s Ay) , y#(S AY))dsds

Note that T1(y) and a2 (y) are zero for y in (0 ,y~ ) . Also T1(y) is a normal

4

1’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~ 

— -. - 
~~~~~~~ -
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random variable for y in (y~ , 1] with mean zero and variance a2(y) that will be

finite by our assumptions . But for y = y
~, 

we have T1(y ~) > 0 and P{T1(y~ ) = ol
= 1/2. Also,P{T1(y~) ~ x} is a normal probability when x > 0,with mean zero and

variance (ga (y~ )+ )2y~ ( l_y~ )41 (y~ ) 2 for this normal distribution. For Case II

(L = L finite) and 0 < y < 1 let

0 for0< y < y ~~•.

(14.15) T11(y) =

,0) for y~ 
< y < 1

where 0 < y~ 
< 1. Thus,for y in (y~,1] we see that T11

(y) is a normal random

variable (having mean zero and variance (g (y2) ) y2(1—y2)41(y2) but with the

probability on the negative axis moved to the origin (zero). For Case III

(L > L*) we let

(14.16) T
111

(y) = 0 for 0 < y < 1.

Finally let

(4.ii) t~,0(y) = ~~~ g#(5~y)41t (5)~ 5 for 0 < y < 1

which will also be finite by our assumptions.

One main goal is to show that as n + ~, the normalized bundle failure time

• & {T - t~(1)} approaches T1(i) in distribution when 0 < L < L , and Tii
(l) when

L = L (finite), and T111(l) when L > L .  Recall that L is the initial collaPs:

load defined in connection with Case II. Note that t~(l) is positive when L < L

And is zero when L > L • We are also interested in the time to failure of a given

- -~~~—~~~~~ - - — —  ~~- - • -~~ •- -~ -— •~~~~~~~~
-—- -~~~~ -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
~
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•1 
- fraction y of fibers in the bundle. Letting [ny+l] be the integer part of ny+l,

we will show that as n + ~ the normalized times vc {T
[~~~~1] 

- t~(y)}

approach T
1
(y),T11(i)~ and T111(y) In distribution for Oases I, II and III

respectively. Note that t~ (y) = 0 for 0 < y < y~ and t~ (y) = t~(l) for

y~ < y < 1. For the vast majority of cases these times to failure will be

asymptotically normally distributed with mean t~0(y) and variance a
2
(y).

Our approach is as follows: First we demonstrate that the fiber failure

times T
1 

< ... < T for the quantile model of the previous section are equivalent

in distribution to T1 
< ~~~~~~ < T~ the fiber failure times for the bundle as originally

described. This is accomplished in the following section. Hence,we need only

show that as n + ~~~ . the normalized bundle failure time T (l) of the quantile

model approaches T
1
(l),T

11
(l) and T

~~~
(l) in distribution for Cases I, II and III

respectively. We also show the parallel results for T
’
(y) for fixed y in (0,1).

Actually, we will prove the stronger convergence in probability when the uniform

quantile processes V~ and the Brownian bridge V are constructed as in Pyke and

Shorack (1968) and the appendix of Shorack (l972a). Our approach will parallel

in some ways the approach used in the proofs of Shorack (l972a ,1972b), and we

will draw frequently on results given in the appendix of Shorack (l972a).

~~ L.
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5. EQUIVALE2~CE IN DISTRIBUTION OF FAILURE TIMES FOR BOTH MODELS

The idea of using uniform random variables as building blocks for

increasing sequences such as {T
1} Is well known. Hence,the equivalence in

distribution of the random vectors {T1,...,T } and {T ,...,T’} is not surprising.

We will only sketch the proof of equivalence , leaving the details to the reader.

Let be the number of fibers which fail at time zero (as a result of the

application of the bundle load pro~~em L(t ) ,  t > 0). If al’. fibers do not fail

immediately , that is , if < n, let ... be the distinct time points

at which the remaining n-N0 fail and let N4 > 1 be the number of fibers which
M

fail at tlme T fori= l , ... , M. Either N = n a n d T = O o r  EN  nandi —0 n
= T > 0.M n
Fix the time points 0 < t

1 
< < t and the integers fl~~,fl1, ‘

a
such that n0 > 0 and n~ > 1 for I = 1, ... , m and E n

1 
= n . Let dt1 be thei=o

infinitesimal time interval [t1, t1 + dti) and let dt1 $ be the associated

set in two—dimensional space of time and the nonnegative integers. Let

= (t
i~~••~

t
m
) and = (n0 ,...,~~ ) and let ~~~~~ be the event

(5.1) A(~~,y~) = 
~!!O 

= 
~O’ 

(T1,N]) ~~~~~ 
8 
~~~ 

T
M,
N
M
)Edt Q !~m~

We wish to evaluate both P{A(~ ,~ )} and P{N
0 

= n} for both the actual model and

the quantile model where primes on the random variables will be understood for

the quantile model. From the resulting expressions we will conclude that the

quantile model is probabilistically equivalent to the real model.

First we define several quantities which will be useful in the proofs.

Let = +. ..+ for j  = O,...,m so that is the niuñber of failures ~~~to

and including time t~. Second let n1 = n~ — 1 for I = 1,...,m and put n0 =

so that n~ will be the additional fiber failures (Daniels feature) triggered at

time t1 by the first fiber failure (Coleman feature) at time t1. Note that
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1 1 = n0 = 
~~~~~~~ 

We make use of the load histories &n,Q,O o

(5.2) ~~~~~~~ = n&(s)/(n—j+l) for t > 0  and j = l,...,n0 + 1

• and

k nL 
~~~~~~~~ 

for tk l  t < tk and k = 1,. . . , I ,

(5.3) £

n&(s)/(n—~~_1—j) for t~ < t and j  = 0,.. . ,ni + 1,

for i = l,...,m where t
0 

0. These are used in the generation of

I (~.h) b
i
(i) = F(tjI&~,i,j

)

for i = 0,...,m and i = ~~~~~~~ + 1. Finally,for i = O,...,m we let H~(s~0) = 1

f

(5.5) H1(s,r)

j j j

~ 
- !  r s![b1(l )_b

1( 0 ) )  1[b i (31+l)_b j (l)]  2 ... [bi(3k_l+1) _b
i(3k_2+l) ] k 

—

k l  l<j1<. <
~ k

1’ 
j
1

1 . . .j~ 1(s—r ) l

-~ for 1 < r < s, where 
~v 

= + •~~ + j and the sum is over k 1, ... , r and all

integers 1 5 
~l 

< < 
~k = r.

- - - L e a  1: For the bundle as originally described and for the quantile model

-

- 

(5.6) P{A(~,~ )} =
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for n0 < n and a > 1. Also

- - (5.7) = P{T =0} = }1
0

(n,n).

Proof. For the bundle as originally described first examine the failure activity

• at time zero and compute = n
0} for 0 < n0 < n. This is essentially as

described by Daniels (19145). Next compute P{(~1,N1) € ~ ~lI!O 
= n0} when

1 < n 1 <n— ~0. See Phoenix (1978) for part of this step and mimic the procedure

at time zero for the remaining part. Similarly compute

P{( T~~1~~1~1) E d t1~1 8 fl1+1IN 0 n0 (T1,N]) = (t1,fli) , .. ., (Tj ,Ni ) = (t1,n1
)}

for < n and 1 
~~ 

n~~1 ~ n-n~. Thus, to arrive at (5.6) we combine these expres-

sions upon noting “given (T1,N1) € 8 n.” is the same as “given ~~~~~ =

(t ,n.)”. For the quantile model, the event A(t,n) entails T’ = ... = T = 0,i -i. 1
T~~11 = ... = T- E 

~-~l’ ~~~~~~~~ = ... = T ~ dt when 1 < n
0 

< n. By (3.4)

the Vi must satisfy

(5.8) V~ ~~F(0I&~~0~~) = b
0(j) for j =

and f o r i =l ,...,m

(s . 9)  F(t 1I 2 ~~~~ 0
) 5 V~ 

~~ 
< F(t~ +dt

1J~~~~10 )

and

(5.10) ~~~~~~ 5. F(tjILn,j,j_1) = b
1(j—l) for j = 2,.. .,n~

Similar statements apply for n0 = 0 and n0 = n. ~~ploying the well known joint

distribution for V1 < ... < V , which are an ordered sample from the uniform
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distribution, we again may construct (5 .6)  and (5.7).

Theorem 1:

The random vector (T1,...,T) for the original model has the same distribu-

tion as the random vector (T ,...,T’) for the quantile model.

Proof. By our assumptions on a, and t
1
,...,t and . .,n , all possible

outcomes are represented by the events A(t,n) and N = n . The theorem is
-0

immediate from Lemma 1.

We remark that results generated by Daniels (19145) for the static fiber

bundle model follow from the results given here. In Daniels’ problem, the

bundle fails immediately under the constant load program 9.
1
(t) = L, t > 0 or

does not fail at all. Here,the event associated with immediate failure is the

event {N 0 n1 and its probability is H
0
(n,n). Under (1.2) we may view

~(x) = ‘V(x,0) as the c.d.f. for the initial strength of the fibers and recall

that b0
(j) = ‘V(riZ~/(rt—j+l)) which is the probability that a given fiber will

fail under the load nL/(n—j+1) for j = 1,.. .,n. Thus,H0
(n,n) may be viewed as the

c.d.f. for the initial bundle strength as a function of t = L/n and is equivalent to

B (nL) of Daniels (1945), section 10, page 1413.

We remark also that results generated by Phoenix (1978) for an earlier

time dependent model follow from the results given here. In the ~~rlier model

‘V(x,z) = 1—exp {— ~ (z)} ,  which is a function of z only so that b1(O) = ... = b1
(n
1+1)

• for I = 1,... ,m and b
0
(O) = ... = b

0
(n
0
+l) = 0. Hence~H~(s~r) = 0 for 1 < r < a

but H
1
(s,O) = 1 for i = 0,...,m. Consequently P{N0 n} 

= 0 and P{A(
~~,k

)} is nonzero

only when n0 = n1 = ... = rim = 0 which forces a = n and = ... = = 1. Thus,

A(t,n) is, in this case, the event {T1 Edt1, ... , T E dt} and (5.6) beccines

P{T1 E d t1,..., T E dt n} = ni II dF(t 11L 
~ ~

) which is equivalent to equationn 1=1
(2.14) of Phoenix (1978). Hence , fibers fall one—at—a-time in the earlier model.

Henceforth we drop the primes on the T1’s of the quantile model .

—-~
----~~
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: 6. SUMMARY OF TECHNICAL ASSUMPTIONS

—l aEarlier we introduced the functions ‘V , g, g and 4’. Here we stm,m~~ize

earlier assumptions and properties and introduce furthe r technical, assumptions

that will be required in the asymptotic analysis. Any new properties among

those that follow are easily verified .

Al. On S the function ‘(‘1(x ,y) is nonnegative, is increasing in y, is
• decreasing in x, is jointly continuous in both variables and satisfies ‘V 1(x ,0 ) = 0.

A2. Y~~ (x ,y) is zero on S0 and is positive and strictly increasing in y

on S

The partial derivatives of are required to have special properties on

A3. 3’V”~’(x,y)/ay and ~‘V~~(x ,y)/3x are assumed to be jointly continuous in
+y and x on S

A4. ay~~(x ,y)/~y and. a’V~
1(x ,y)/ax are zero on S° by A2.

Let the bounding functions B and D be defined by

(6.1) B(y) = 
~~

_b
l(l,_y)

_b
2 for 0 < y < 1

and

• 
‘ — 3/2+b1+tS —3/2+b2+tS

(6.2) D(y) = My (1—y) for 0 < y < 1,

4 where M > 0, 1/2 < b1 < 1, b2 > 1 and ó > 0 are constants. A ]o,L is a positive

constant and. we understand. that M may depend on L.

~~~~~. (Boundedness). We assume that a’V~~(x ,y)/ay < B(y ) for (x ,y) in ~
and x > L .
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ii I 
~~~ . (Boundedness). Given 0 < b < 1 we assume a’v ’(x ,y)/ax~ ~~

- — 3
- - 

- for (z y) in S satisfying 0 < y < b2 and L < x < L/(].—b.,) where Mb Ia a-
• 

,1 
• 

,.1

- 
positive constant.

~[. (Case I). For points 0 < y~ < y~ < y ~ ~~1 we have that g(y) is

nonnegatIve and continuous on [0,1), is zero on [O ,y~) and on [y~,1), is strictly

increasing on [y~ ,y~ ) and is strictly decreasing on [y~,y~).

- A8. ( Boundedness). We assume that g ’ (y) exists and is continuous on

R = (O ,y~) U (y~ , y~ ) U (y~ , 1), and that g’(y) < B(y) on R.

A9. ga (y) is zero on (O ,y~ ) and (y~ ,l), and is positive and continuous

elsewhere on R.

Bl. The function 4 is bounded, contiriuous-,decreasing and positive on

[0,1) and satisfies ~~y) + 0 as y + 1.

B2. (Boundedness). We assume that the derivative 4” exists on (0,1) and

- - I that I$’(y)I < D(y).

- 

• 

The bounding of 4’ by D, and of g and 9’V~~’(x ,y)/3y by B will permit us to derive

important asymptotic results. These bounds are unrestrictive in most applications.

In the proofs that follow we use right continuous versions of some results

• ir~ the Appendix of Shorack (1972a). These are as follows~

El. (Convergence of V~ to v).

(6 .3 )  sup IV~(y)_V(y)I 
~e 

0 , 
--

. 

. 0<y<1

that is , every sample path of the V~ process converges uniformly as n-’~ to the

corresponding sample path of the V process.

- - • ________________
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R2. (Glivenko-Cantelli Lemma) .

(6.4) sup ~r~ ’(y)~y~ 4’e ~ as n 
+

• O
~
y<l

1/2— 6/2R3. For q(y) = [y(l-y)] we have

(6.5) sup ~V(y) J / q (y) = 0 (1), sup Iv (y)~/q(y) 0 (1)
O<y<l 1/n~y<1—1fn 

n p

for n > 1 and

( 6 . 6 )  (nl/2q(l/n))
_l 

-,
~ o as n +

Ele . (Lemma A3 of Shorack (l972a)). Given c there exists 0 < = B < 1

and a subset S of ~2 having P(s ) > 1—c on whichn,c n,e

(6.7) Bt ~~ , r 1( t)  < l—8(l—t) for 0 < t 1. —

• Thus when B is our bounding function (6.l~ we have

S (6.8) B(r~ -(1)) < M
8B(y) for 0 < y < 1

for some constant M .8
We now proceed with the major theorems .

-•— — - - __ - — —— -•—-~•_ ~ -._--— ——____ - - —_ _____________________
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7. ASYMPTOTIC ANALYSIS OF THE QUARTILE MODEL

The main result of this section will be that given 0 < y < 1 the

- 

- 
sequence {T (y)} 1 converges in probability to a certain random variable when

V~ and V are constructed as in Pyke and Shorack (1968). We begin by proving

several lemmas.

Lemma 2: Given 0 < c < 1

(7.1) - sup ~W (y) — g(y)~ + a
O~y~51—c 

e

(7.2) sup ~W~ (y) — g#(y)f e o,

(7 .3) sup I~~(~) — g(y)~ + 0
05y5l—c

and

(v.14) sup Ig~
(y) — g

~
’(y)I + 0 as n + ~~~

O5y<l—c

Proof: By assumption Al we have uniform continuity of ‘Y”3’ on the compact set

{(x,y); L < x  < L/(l—c/2) and 0 <y < 1—c/2} . Now sup{I L/(l—y) —

0 < y < 1—c) + 0 as n + ~ since 0 < y - y~ (y) < 1,/n for y in [0,1). Also

sup{~r ’(y) — yj ;  0 < y < 1) ‘‘e 0 as n 
+ ~ by ( 6 . 1 4 ) .  Thus,

~~ I’r’(L/(l—Y~(Y)), r~ ’(y)) — ‘V ”~’(L/(1—y),y)~ ~e 
0

0~ r<1—c
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and (7.1) is ven t led. Similarly, (7.3) is verified . Now for

O < y < 1 - c  we have

sup W (t) — sup g(t)I < sup 1W ( t )  g (t )~O<t~5y 0<r 5y O<r ~y ~

and (7.2) is verified. Similarly, (7 . 14)  is verified .

L~nmip 3: Let y be in R and let

(7.5) R6 (y )  = {x; Ix-y l < 6 and 0 < x < 1).

If iS > 0 is chosen so that R6 (~,)~ R then as n + ~~

(7 6) sup{IZ~(x)—z (x)l, x ER 6(y)} ~e ~

Proof: Let

(7.7) A~(x) = {~~~ (L /(l-y (x ) ) ,  r~~ (x )) - g (x)}/(r~~(x) - x),

(taking the right limit at points x where r 1’(x) = x). We have

Z (x) = A~(x)V~(x) and Z(x) = ga(x)V(x) on P and

(7.8) IZ~-Zl ~ IA~V -A V I  + IA~V_g
3vI

~. IA 1~I I V~-VI + Jv~ A _ g a~.
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Now sup(IV (x)-V(x)I; ~ < x < ~~ “e 0 and V(x) is bounded on (0,1) for

fixed w in ~2. The lemma will follow upon verifying that as n -*

(7 .9) sup{~A~(x)_g a(x)~; ~~ ~~~~ e 0

since g~(x) is bounded on R6(y). By assumptions A3 and AL~ we have

continuity of 3’i’~~’(r, ,O /a~ on the set {(~,~ ); x € R 6(y) and j~—xJ .~~~ 
6’

and IL/(l—x)-~ l < 6”) where 6’ > 0 and 6” > are chosen so that this set

is contained in S (as can be done by the line touching assumptions) and

where R6+6, (y) C R since R is open. Moreover, the continuity is uniform

since the set is compact. Now sup{I L/(1-x) - L/(l-Y~ (x ) ) I ;  X E  R6(y)) + 0

as n + and we have (6.14) also. Thus,for n exceeding some n~~6 6 6 w
we have for x in R

6
(y)

(7.10) ~A~(x )~ga (x )~ < I~ (L/(1-Y~(x)). ~) 
- (L/(1-x), z)I

~~ I

for some F~ between r~~’(x) and x, and (1.9) follows from the uniform

continuity.

Lemma 14: Let

(7.11) R~(y)  = {x; y#(y) — 6 < x  < y #(y_6) + 6 and 0 < x  < l}.

Fix w in ~~, y in ( 0,1 )  and ,S > 0 such that R~(y )C(0 ,1). Fop n

exceeding some n6 we have
$ ,w ,y

(7.12) W~(y) sup{W~(x); X E  R~(y)},

‘ -
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and for n exceeding some n

• 
(7.13) g~(y) sup{g (x); xE R~(y)}.

Proof: Suppose 0 < y < y
~. Then by assumptions Al and A2 we have

0 on the set {(n,~ ); 0 < x  < y—tS and IL/(1—x)—nf c 6’

and 0 < < y - 6/2) for some 6’ > 0 depending on 6. Now for

0 < y < y ~ we have

(7.114) sup{W (x); 0 < x < y}

= max[sup{W (x); 0 < x < y-6}, sup{W (x); xE R~(y)}]

and by (6.14) we have sup{ ••
~
1
~~~~~I 0 < x < y-6} < 6/2 for n exceeding

some n6~~
. Also, sup{IL/(l-x) - L/(l-y (x))l; 0 < x  < y-cS} < 6’ for n

exceeding some n
6. Recalling (3.9) we have for n exceeding n~

max{n , n } that6,w 6

(7.15) sup{W~(x); 0 < x < y — 6}  = 0.

But W (y )  > 0 for 0 < y < 1 and (7.12) follows from (7.114). Next suppose

y
~ 

< y < y
~. Then by assumption A7 we have g(y) > 0 and g(y) strictly

• increasing on [y~
, y

~). Thus g(y) - g ( y-6)  > 6” for some 6” > 0

depending on y. By Lemma 2 , for n exceeding some n~ we have

sup(W~(x); 0 < x < y-6} < g ( y — S )  + 6”/2 < g(y)  - 6”/2 while W (y) > g(y) -

tS”/2.  Now y#(y)  y so that R~(y) Jx; y-6 < x  < y). Hence,(7.l2)

easily follows. Lastly suppose that y
~ < y < 1. Then we already have

F!1 

— 
~

,-
~-1.- 

~_.:-~~? -
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(7.16) su~ tW~(x); 0 ~~x ~ y)  = sup {W~(x); 4 -  6 < x  <y}

for n exceeding some ~~~ and (7.12) is verified for

4 < y < 4 + 6. If 4 + 6 < y < 1 we have by assumption AT that

g(y~) - g(x) > 6’’’ for 4 + 6 < x < y and some i S ’ ’ ’  > 0. By Lemma 2

we have sup~~~(x); 4 
+ 6 < x < y) < (g(4) + g(y~ + ‘5)) /2 while

w~(y~) > (g(4) + g(y~ + i S ) ) / 2  for n exceeding some 
~6,w,y 

so that (7.1,2)

holds again. The proof of (7.13) is analagous.

Lemma 5: (Case I) SlAppose y is in (0,y~)~J(y~,1). Then as n +

(7.17) IZ~
( —Z (y”(yY 1I ‘e 0.

Proof: Fix c > 0 and w in ~ and y in (0,y~)Ij(y~,1). Then there exists

6 > 0 such that R6(y
”(y))~~ R and

(7.18) s~p{~Z(~ )_Z(y#(y))J; x ~ p (y
#(y))} < c/6 .

This follows since Z(x )  = ga(x)V(x) is continuous in P given w in a. By

Lemma 3 we also have for n exceeding some n that
~,6,w ,y

(7.19) supflZ0(x)—Z(x)I; xE R6(y
#(y))} < c/ 6.

Now I Zn(~~
_Z
n(Y)I 5. IZ~(x)-Z(x)I + I Z~(y).-Z(y)l + IZ(x)-Z(y)I. Hence, by

(7.18) and (7.19) we have for n> n that
-~ • c , ,w ,y

(7.20) sup{IZ (x) — Z~(y#(y))~ ; x ER 6(y
#(y))} < c/2 .

S 

—- - ------ -
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~e recall from Lemm~i 14 that :-~r u t~xee~ding •‘mne n~ we L~ve,w ,y
sup{W~(x); 0 < x < y) = sup{W~(x); x € R~(y)} and for n exceeding some

we have sup{g~(x); 0 < x < y} = sup{g~(x); x E R~(y)). Hence,for

- n> n max{n’ , n ’ } we have
‘~,Y ~,W ,y

(7.21) Z~(y) = v~~ 1sup{W~(x); x ~ 
R~(y)} - sup{g~ (x ) ;  x ~

Also~ R~(y) C R6(y
#(yflc R and

inf{W (x)-g (x); x E R~(y)}

(7.22) < sup{W
1~(x); x ER~

(y ) }  - sup~g~ (x) ;  x ER~(y)}

< sup {W
1~

(x )  - g~ (x) ;  x ~ R~(y)}.

L 

Thus for n > n we have
I ‘ 6,w ,y

• (7.23) inf{Z~(x); x € ~6(y
#(y))} < Z~(y) < sup{Z~ (x ) ;  x ~

Now by (7.20) we have both

I suP{Z~(x); x ER 6
(y#(y))} — Z~(y

#(y))I <

4 arid

Iinf{Z~(x); x E ~6(y# (y ) )}  — Z (y#(y))~ c c/2

~~~~~~~~~~~~~~~~ ~ • - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

-
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for n exceeding some n . Taking n max{ n ,n )€ ,6 ,w ,y 6 ,w ,y t ,6,w ,y

we have for n> ii ’ thatc, 6 ,w ,y

(7.214) 
~~~~~~~~~~~~~ 

<

in view of (7.23) Observe that

~ ~Z~ (y)~Z(y#(y ) )~ +

Hence,for n> r~’ we have from (7.214) and. (7.19)c,6,w,y

that -

( 7 . 2 5 )  Iz~(y)~z(y#
(y~~I < ~/2 + c/6 < c

which gives us the lemma.

Lemma 6. (Case I) Suppose 0 < 4 < 1. Then as n -‘-

(7 .26 ) ~~~~~~~~~~~~~~~~~~~~~~~ 0)1 
~.e.°

• Proof: Take w in 1~ so that V(y~) < 0. Then since V (y)  is continuous on

(0,1] there exists 6 satisfying 0 < 6 < 4 such that V(y) < 0 for 4 — 6 < y < 4. 
~~

(6.3) we have for n exceeding some n6~~ that V~(y) < 0 and thus
— 1 # —l . . .r~ (y) < y for y

1 
- 6 < y < y

1
. Now ~‘ (x ,y) is increasing in y on S by

Al. Hence,by (3.9) and (3.16) we have

(7.27) 0 < Wn(Y) ~ g~(y) ~~ ~~~
(j_y (y) 

, y) - ~~l( L 
, y (y))

k-I. . 
• •  

- IT I •~• T  IT~ :1
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for y in 
(4 

- 6, where we have subtracted the quantity g(y (y))
• which is zero since y (y) < y

1. By assumption A5, a’(’(x ,y)/ay < B(y)

for (:~,y) in S and x > L. Thus,upon obsorving the properties of the bounding

function B(y) we obtain from (7.27)

(7.28) 0 < W (y) < g
~

(y )  < (B (y (y~ - 6) )  + B(4))(y - Yn(Y))~

• for y in [4 - 6, 4i. Now we have 0 < y - 
~~~~ 

< 1/n for y in [0,1] and from

the proof of Lemma 14 we know that W~(4—&) = 0 and g~(y~—6) = 0 for n exceeding

some n’ . Also,
iS ,w

g (y1
)  = max[g (y

1
—iS ), sup g

n n 0<z<sS n

and thus it follows from (7.28) that & g#(y~) + 0 as n -~~ ~~~. Similarly,

& w’~(y~ ) + 0 as n + ~~~. Thus Z’~(y~) + 0 as n +

Next suppose c > 0 is given and w in ~ is given such that v(4 ) > o.

Since V(y) is continuous on [0,1] there exists a 6 depending on c and

satisfying 0 < 6 4 such that v(y) > 0 for 4 — 6 < y < 4 and

(7.29) g~ (y~~~sup{~V(y)  - V(4) I;  4 - 6 < y  < y ~~ <
~~~~~

.

- • Also,since V(y~) > 0 we have by (6.3) that r~~ (y) > y for 4 - 6 < y  <4

and n exceeding some n • r~ow for fl > fl
6,w 6,w

(7.30) W (4) ~
_l
( 

L 
, r

_1
(y#) )

• 

• 

= 

~~~~~~~ 

~)(r
1(y~)~ 4) +
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for some 4 < ç

1(Y
~
). and note that the point (L/(1_y~(4)), ~) is

in S’
~. Hence,for ~ >

(7.31) ~~~ W~ (y~ ) = 

~~ 
i_y (4) 

~~ V (4) + ~~~ g ( y
~).

On the other hand for y in [4 
- 6 , we have

(7.32) 1~~W (y) <
~~
! (C

~
fl)Vn

(Y ) +

for some point (r ,r~) in the set

S~ f l { (x ,z) ;  4 -  6 < z  < ç’(y~)~ L/(1-y~(4-6)) < x  < L/ (1-4)}

which is nonempty for all n > 
~6w

• Now by (6.3) we have sup{ IV~(y)_V(y) I;
• 

4-6 < y < 4) + 0 for fixed w in ~ and note that V(y) is bounded. Moreover, by the

- 

- • 
joint continuity (A3) arid B(y) bounding (AS ) of a’r1(x ,y)/~y we may shrink 6

and choose n sufficiently large so that both ~‘V
”1/~~ of (7.31) and ~~~~~ of

(7.32) are as close to g~(y~)
” as we wish. Thus,we may shrink 6 and choose

su!f iciently large so that

(7.33) ~~~~~~~~~~~~~~~~~~~ < c/8

for (7.31),and

(7.34) ((ar1/an)v (y)~g
3(y~~V(y)I < c /8

for (7.32) for all n exceeding nw,c
. Recall also that 0 < ,1~~ g~(y~) = sup{v’~ ~~(i) ;

0 < y < 4) < c/8 for all n exceeding some n . Thus,from (7.31) we obtain

1’ _ - - -~~~~~~~~~~~~~~~~~~~~~~~~ —~~~-
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(7.35 ) ~~~~~~~~~~~~~~~~~~~~~~ < c/14

for all n exceeding 
~~~ 

max C ’~w E ~~ 
Similarly,for all y in [4_6 ,4] we

find from (7.32 )

(7.36 ) v’~ W (y) < g~ (y~~~
’v(y) + c114

for n exceeding n ’ 
. Now from before ,~~~ W~

’Y (~ #_~5) 0 for n > n~ and. we haven 1 .,,w

(7.37) W~(y~) = max[w~(4—6), sup W (4— 6+z)] .

0<z<iS ~

Thus,by (7.29) and (7.35) to (7.37) we arrive at the key relation

(7.38) & w ( 4) < vc W~
’(y~ ) < /ii’ W (4) + ~~

for n exceeding some n
~~c m x[n

~~w
,n’w e ] . Since Z~(y~) = ~~~

and ,~~~ g~(y~) + 0 as n -* ~ we obtain from (7.38) that Z
#
(4) + z~(4) and from

(7.35) that z (4) + g3(y~)
”v(y~) for this W in a . The set W for which V (y~) 0

has measure zero and our result is a.e. and the proof is complete.

L • 

~~~~~~~~~~~~~~~~~~~~~ - ~~~• •~~~~~~~~
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Lemma 1: (Case II). Under the assumptions of Case II,

(7.39) Z~(y) e o for y in [0,4)

and

(7.140) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ for y in [4,1).

Proof: The proof is similar to that of Lemma 6. To show (7.39 ) we recall

that 4 4 and from the proof of Lemma 4, that W#(y~_c5 ) = 0 and ~~(4_iS ) = 0

for 6 > 0 and n exceeding some n
6,~~

. Hence choose 6 > 0 such that 
~~ 4 - 6.

To verify (7.140) we repeat the proof of Lemma 6 with the following modifications.

- Replace 4 - 6 < y < 4 with 4 — iS < y
~
< 4 + 6 and make the other associated

• changes. Now for n exceeding some n6 w we have from Lemma 14 that

- 
~

- w’~~) = sup{W (x); x ~ R~(y)} and g
#
(;) sup{g (x); x 

~ 
R~(y)}. Hence when w

is in ci such that V(y~) < 0, we obtain Z
#
(x) + 0 as n + ~~~. For w in ci such that

V(y~) > 0 we find 
~~~~ 

g#(y~ + 6 ) 1 + 0 as n + ~ and arrive at the analog of

(7.38) wbi eh -is

(7.141) VcW(4) < v’i~ W~(y) <vcw (4) + ~~

whence Z’~
’(y ) + z~(4) + g

3
(y~)

”V(4) as n + °. Again the set of w for which

• 

- 

v(4) = 0 has measure zero and the proof is complete.

~

i -ii-— 
— —
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~~~~~~~ (Case III). Suppose y~ j~ in (0,1). Then ~s n + ~~

I -

~~ (7.142) IZ~(y)I ~ 0.

~~~of: Choose c > 0 such that y < 1-c. Then by Al and A2 , ~~~~~~~~ = 0

on the set ((n F~~); 0 < x < 1—c and I L/ ( 1— x )— n (  < 6 and 0 
~ 

l—c/~ }

for some 6 > 0 depending on c. By (6. 14) and the fact that

sup(IL/(1-x)-L/(1-y (x))f; 0 < x < 1-c) 0 as n + we have from (3.9)

that sup{W~(x); 0 < x < 1-c} = 0 for n exceeding some n
~~~

. Similarly,

sup {g~ (x);  0 < x < 1-c )  = 0 for n exceeding some n .  Hence,(7.1e2) is

immediate.

Lemma 9: Let

(7.143) R 1 = ,‘~~

‘ 
($(l/n)—~(0))W1

(7 . 1414) R ~~,G’ 4~~ n—1) /n)inax {W.; i 1,...,n} ,

(7.145) R
: ~~~f~~~+’(y)~~

’(L ,y)dy ,

and

(7 .46 ) R 4 
= 

~~1(n_l)/n
’ W

~~~~~~~~

Then as n +~~

- • 

(7.147) R
1 

0, R
2 

0, R
3 

0, R 4 
+ 0.



Proof: For ft~~ we have W1 = ~~~(L ,V1
) and by AS and B2 we may write

(7.148) lR~1I < vc (fo
1 B(y)dy)(f~~~D(y)dy).

On the event V1 
< 1/2 and for n > 2 we have

-b +1. b +6-1/2 -b1+l ~
(7•~9) IR~1I < ,‘~~ M1

V~ 
1 (1/n.) 

1 = M1(nV
1
)

Now P(V1 < 1/2) + 1 as n + and nV
1 

= 0 (1). Hence,since 6 > 0

we obtain IR I < M n 60 (1) + 0 as n + ~~ . Next, consider R and observen i — i  p p n2

by Al that 0 < max{W1; i = 1,... ,n} < ‘I’~~ (L~V~). }Lence,on the event Vn > ] J 2

and for b2 � 1 we have

IRn2 I ~ ~~~~ If~ .11~D(Y)dYIIJ0~B(Y)dYI

1 -i/ 2~~. +iS , ,, -b +1

(7.50) ~ ~~~~ M~ (—) 
2 1M 2 + M

2
(1-V ) 2 - •

—b 2—iS+l ,, -b~-o+l -b
2
+l

< M2M~n 
+ M

2
M
2
n (1—V ) . —

• Recall that (1-V )n = 0 (1) and in fact has a limiting nondegenerate continuous
n p -b +1

distribution as n + and hence so does ((1_V
n
)fl) 2 

• Now b2 > 1

—b -6+J.

and P(V > 1/2) + 1 &s fl + ~~~. Thus M 2M 2n 2 + 0 as ii + and

“ -6 -b 2+1 -6
M 2M 2n (( l -V )n) n 0 (1) + 0 as n + ~~~. Thus I R~2I -~ 0

- 

I for b~. ~ 1. If b2 = 1, the last teiin in (7.50) is instead

6
— M2M2( 1/n) (1og(n(1-V~)) — log n), and we arrive at the same conclusion.

- 

4 For R 3 we have for n > 1

- - 
--

~~~
—--—

~~~ 
•—--.

~
.
~~~-. ~~~~~~~~~~~~ - —- -
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IR~3 I ~~. 
~~ 1j

1/n 1j Y B(x)dx~D(y)dy~

i/n —bl+l —3/ 2+b1+6 , —6
-

- 
(7.51) < M 3 ~~~ 

y y d y M
3
n +0 -

as n -‘ ~~~. Finally, for R~~ we have for n > 1 and b
2 

> 1 ,

b —3 /2+ 6 , ,, —b
lR~4t L~ “~ M

1.~~If1 1/ 
(l-y) 2 (M~ + M~ f ~ (1-x ) 

2dx)dy l

b — 3/2+6 , , ,  , , , ,  —b +1
(7 .52) < ,‘~i M4f f ~~11~(1_y ) 2 (M + M

4 
(j ~~~~)  

2 )dy (

b2+6—l/2 ~ 6 /
< 2 v~i~ M4M4 (1/n) + 2 vc M4M4 (1/n) +1 2

+0

as ~~ + ~~~. If b
2 

= 1,the last term in (7.52) becomes instead

& M4M~f~
’T1 z hh’2+iSlog(l/z)dz and. we arrive at the same conclusion.

:1

—
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I Before proving the major theorems of this section, we prove one more lemma.
- 

-1 It*1~ *In what follows the restriction will mean f (t) = t ( t )  for 1/n < t < 1—i/n,

and f (t) = 0 otherwise for f on (o,i) or [0,1].

Lenmis 10: Given c > 0 there exist subsets Sfl E~ 
n > 1 satisfying

P(~ ) > i—c for which
• n,c 

-

(L53) X n,c ) I7a
~~

(5) I <~~~B(s)q(s) for s in (o,i)

where X (S) is the indicator function for the set 5, M is some constant, and

q(s) is as defined in result R3.

Proof: Let b be a constant satisfying 0 < b < 4 and suppose s La in (0,b]. From A6

(take b
3 

= (b+1)/2) and (6.14) and the fact that 0 < y — y (y) < 1/n,we have

(7.514) I30(n,s)/anl < M ~ where O(r~,s1 = r’(L/(1—~), r~~
(s))

for some constant M,0 when n exceeds some ~~~~ when r~ lies between min(F~~( s) ,

- y (s)) and max(F~~(s), s) and when (L/(l—~), r
i(s)) is in ~~~. Thus, by (14.5),(3.9)

and (7.54) we obtain

(7 .~ 5) ~(F 1(~~)) - M~ j y (s) -F~~( s ) I  < W ( s )  < g(r ~~(s)) +

I . for n > nb . From (7.55) we obtainH ,Ci)

—M~ sup{~ r
1(r)-y (-r )~ ; 0 < t < s)

i i  
(7.s6 ) < W

a
(s) — g (r

11 
( s ))

< M~ sup{(r~
’(t)— ~~(t)f; 0 < t < s}

— - •.,~~~~ .•-•-—~ -~• •.—‘~•~~-‘-~- - 
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whene~

I~~(s)I 
< 

~~~~~ ~~~~~~~~~~~~~~~~ + 
~~~~~

(7.57)

+ M~ suP{IV~(t) I; 0 < t  <s} + M , sup{ IV~~
(
~~(t )—t ) I~ 0 ~~ is).

Using (7.54) again we obtain in a similar fashion

(7.58) vc ~g#(5)_g~ (s)~ < M ~ sup{lvc (y~(t)_t)I; 0 < c  <s)

for n > nb . Now, by A8 we have g’(n) < B(s) + B(F 1(s) )  for n between

s and r~
’( s)  and v~ in R since b

1 
> 0 and b

2 
> 0. Furthermore g(s)

is increasing on [0, 4). Thus,by (6.14) we obtain for ii exceeding some

n’ and for s in ( 0,b]
b,w

/
~ 

~g#(~~ l( s) )_ g #(5)~ = /~

- < (B (s )  + B(r 1(s)))Iv~(s)I.

Consequently, for s in ( 0,b] and n > = max {n
b W ~ ~~~~ 

we have the

first important bound

~ 
(B (s)  + B (r

1(s ))) Iv~(s) I

+ 2M~ supflv’~ (y~~( t) _ t ) ( ;  o < s}

(~.6o) Mj~ sup{Ivn(t)I; 0 
~~~~

t

<~ tç(B(s) + B ( r~
1(s ) ) )q(s)( 1/( V~ q(s))

-: + SUP{JV~(t)I; 0 
< < s}/q(s)]
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~~~~~~~~
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where q(s) = [s(l_s))l~
’2 6I’2. Obviously H~ ’’ may be chosen large enough

for (7.60) to hold for all n. Now suppose S is in [b3) and choose 6’ such that

• 0 -
~ 1-6’ . Then for n exceeding some 

~b 6’ 
we have by Lemma 14 that

W~(s) = su~{W~(t); b-6’ < t ~ 
s} and g~ (s) ~~sup(g~(t ) ;  b-6’ < t 

~~~. 
s}. Thus,

for n > n, , we haven ,6 ,w

IZ~(s)I 
< V ~~sup {t W~ (t )_ g ( t ) l ;  b—6 ’ < r  < s }

(7.61) < suP{j.~~~~(L/(1_Y~(T))~ ~er))f~ V~(t)~ ; b—iS ~~~~~~~ ~~
s}

for some ~~~(t) between t and P~~~( t )  where the “sup” is over i for which

the points (L/(l_Y~(t))~ ~~~(t)) lie in S. Now by the properties of B(s)

we observe that

(7.62) B(~~(t)) < B(t) +

- 

• - Hence,for n > 

~b,iS’,w 
we have by A5 the second important bound

(7.63) IZ~(s)I < sup{(B(t)+B(r~~(t)))q(t); b—iS ’ 
~~~~~~

t <s}

sup {~V (t)~/q(T); b—iS’ ~~~~~ T ~~~ 5 )

for s in [b ,1). Now because of the restriction Zn (s) is zero on

[o ,1/n)UØ ~-1/n ,iJ . But on [i/n ,b] we have
1 ’

• - - 
- -- --- --
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-
~~~~ (7.64) sup{ IV (t)I; 0 

~~~~~~
t < s)/q(s) + l/(q(s)~~)

• ~~~~~~~~~~~~~~~~~~~~~~ 0 < t  <s} + (nV 1 + 2)/(,4~ q(1/n))

= o~(l)

by R3 and the fact that nV1 is 0 (1). Thus,on (0,b] we have for n > n~,

that

(7.65) IZ~~(s)I ~~~ 
(B(s) + B(r 1(s)))q(s)o~~ L)

by (7.60) and (7.614) and in fact, this holds for all n. Also,on the sets

S~~~12 
of RL~ where P( S

n ci 2
) < 1—c/2 we have B(s) 1- B(r~

’( s) )  
~~ 

2M
8
B(s).

Consequently, for s in (0,b] we obtain

(7.66) • jZ~~ (s)~ <B (s)q(s)O (1)

— on the subset S
n,c/2• 

Now for s in [b,1-1/n] we have by R3 that

sup (
~
V (t)

~
/q(-r); b—iS ’ 

~~. 
-r < s} = 0 (1). Also , B( s)q(s)  grows unbounded

I 
as s + 1 since b2 > 1. Thus,on the subset S

12 
we may replace

B(-r) + B(r~~(t)) by 2M~B(-r) in (7.63) and we obtain (7.66) again for n

- and s in [b,1). Thus,we may also construct subsets Sn c  satisfying

~ C S and P(S ) > i-c such that (7.53) holds for ~ chosen
• n,c n,e/2 n,c c

sufficiently large.

Theorem 2 (Case I) Fix y in ( 0,1]. Then as n + ~,

4 T~(y) ; T1(y),

with t5(y) of (3.20) and a2(y)  of (14.i4) finite.

- I -
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Proof: From (3.19) and (3.21) we have for n > l/y

(7.67 ) T~(y) = - ~ Z~~(s A y)+’(s)ds - R~~ + ~
/
2 

+ R 3 +

where R and R are as in Lemma 9, and
ni n3

~ 
+((n-l)/n)max{W

1; i=1
,. . . ,n) for ~~~~~~~~~ < y ~~1,

(7.68) R~2 
=1I~

(o~ otherwise,

and

1”~ 
f(fl..1)/fl+ (s)g~(~Ay)ds for < < 1,

(7.69) R~~ ~~

otherwise.

Also,by Al we have 0 
~ 
g
#(s) 

~~. 
‘V~~(L ,s) on [0,1). Suppose y � 4. Then

by (14.12), (7.67), (7.68) and (7.69) we have

(7.70) jTn
(Y)_T

i(Y)J < J ~ JZ~~(s A y)~Z(y #(sA y ))Jj~~
’(s)Jds +

since 0 < R3’ < R and 0 <IR~ < R (and this holds in fact for n > 1).— n2— n2 — nL~~— ~4 
—

1-
~ #

Now by Lemma 5 we have (S A Y) - Z ( y  (s ,
~
y))I

~ 
0 as n + for s in

(0,4) 0(4,1). Also, R .  0 by Lemma 9. To conclude IT (y)-T 1(y)I 0

we will use the dominated convergence theorem upon showing that

A y)_Z(y#(s Ay))II$ (5)I is bounded •on 
- (0,y~)U(y~ ,1) by an integrable

function when w is a member of a suitably defined set of arbitrarily high

probability. By A5 and R3 we have for s in (0 ,y~)U(y~,1) that

1-i - -
- - -~~~~~ • — -  - -
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IZ (y# ( s ) )  =

(7.71) <

< B(s)q(s)O~(1).

Thus,there exists a subset such that

(7.72) x(
~~,2

) IZ (y#( s ) ) J  < M B ( s ) q ( s )  for s in (0 ,y~ ) U(y~ ,l)

where F~ is some positive constant. Hence,le-t S S 11 S wheren,c n,c/2 c/2

S are the sets of Lemma 1O ,ancl observe thatn,c/2

- ‘ #*
X(Sn,c)IZn 

(s)—Z (y (s))I

(7.73) 
~~~ 
(~ + ~~)B ( s )q (s)  for 5 in (O ,y~ )U( y~ ,i) ,

and P(~ ) > 1-c. We may now use the domina ted convergence theorem on (7.70).
n, C

Recall B2 and observe that f
1
0
B(s A y)q(s A y)D(s)ds < for y in (0 ,1]. Apply

the theorem once for each w to conclude IT (y)••~T1(y)I ~ 0. Next suppose

y = 4. Then by (14.12), (7.67), (7.68) and (7.69) we have for n > 1/4

IT~(4)-T1(4)I <

:.~ 
(7.714) + I 1 7 # (s) II,~(s) Ids + IR~~~ I .

-
• 

By Lemmas 6 and 9,  the first and last terms of the right hand side converge

4 to zero in probability. In fact we have just demonstrated that the middle

term does also since Z(y#(S)) is zero on (0,4).

L I  
— - — - —.-- ‘— - ‘• - -
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Finally , the finiteness of t~(y) given by (3.20) is easy since

g~ (s) 
~ 

‘Y~~ (L , s) for 0 
~~ 

S < 1 and by A5

• ,~
. -b

2
+1.

• 

+ M
2(1-s) for b2 � 1

(7.75) ‘(‘(L , s) 
-

- M
2
log(1-s) for b

2 
= 1

for some constants M1 
and M

2
. Recall 14 ’

( s ) I  < D(s) and obtain a finite bounding

integral for (3.20). The finiteness of a
2
(y) given by (14.114), is obtained upon

noting that r(s
1,
s
2
) 5. s1g

3(s
1
)g9(s

2
)(l—s

2
) for S1 < ~2 

in R, and that the

integrand in (14.114) is symmetric in s
1 

and 
~2 

Hence , replace f~ f~ with 2f~ f~
2
,

recall A5 and B2,and obtain a bounding integral which is finite. The proof is

complete.

Theorejp~~ (Ca se I I)  Fix y in ( 0,1]. Then as n -‘-

(7.76) T (y )  -
~~ T

11
(y)

and t (y )  + 0.

Proof. Suppose y is in (0,4). Then by (14.15) and (3.21) we have for n > lfy

• 

~~~~~~~~~~~~~ IT~~
Y_ T

II Y I  < f ~ ~z~~(s Ay )I1~~?(s)Ids + 

~~ 

IR~~I .

By Lemma 7 we have Z~~(s4y) + 0 as n + ~ and by Lemma 9 we have

4

~ IR~~l -’- 0. Recalling Lemma 10 we again use the dominated convergence theorem

as we did in the proof of Theorem 2 to conclude IT~(Y)-T11(y) ; 0. On the

other hand suppose y is in c4, 1]. Then we obtain for n > l/y

- — —~~~~~~~~ •————
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y#

1T5(y)—T
11

(y)I 5. J02 IZ~ (s)II+’(s)Ids + 
il 

IR~~~I

(7.78) + I
l Iz#~( A

Now by Lemma 7 the integrands converge to zero for fixed S.  By Lemma 9

4
we have X R~~~ + 0 in probability as n + ~~~. Thus we need integrable

i=1

bounding functions for the integrands in (7.78), in order to use the dominated

convergence theorem. The approach is basically the same as that in the proof

of Theor em 2. The analog of (7.71) holds namely

(7.79) ~~~~~~~~~~~~~~~~~ I B(s)q (s)0 (1).

We thus complete the analog of (7.73) which is

• (7.80) x(~~,6
) ~~~~~~~~~~~~~~~~~~~~~~~~~

~~. 
( + M )B(s)q(s) for s in (0,1)

-
• 

and IT (y)—111(y)I ; 0 as n + ~ follows. Finally, to establish t (y) + 0 as

n + oo~where t (y) is given by (3.20),we recall (v.4) and note that g
#(y) = 0

on [0,1). Also g
e
(s) <q ’~~ (L ,s) where ‘V 3

1L,s) satisfies (7.75),and I~
’(s)I ID(S).

The portion of the integral for t~ (y) on [0,1—c ] shrinks to zero as n + ~~. The

remaining portion on [l—c,1] is easily bounded, and this bound is made arbitrarily

small by shrinking c.

~~~~ (Case 111) Fix y in (0,1]. As n +

(7.81) T5( y )  j~
- T

111
(y)

and t (y) • 0.n 

- - -  - -- - - ‘
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Proof: We have for n > 1/ y

(7.82 ) IT~
(Y)-T111(Y)I ~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~ + E I R ~~I.

14
By Lemma 9 we have E I R ~1I + 0 as n + ~ and by Lemma 8 the integrand of

(7.82) converges to zero for each a. To conclude convergence in probability

we essentially repeat the method of the proof of Theorem 2 in view of Lemma 10.

To conclude t~(y) ÷ 0 as n -‘ ~, repeat the appropriate portion of the proof of

Theorem 4.

In practical applications , one invariably will wish to compute t~(y) of

(14.17) rather than t (y) of (3.20).  Thus we have the following.

~~~ma 11 Fix y in (0 ,1]. As n +

(7.83) 
~~~ (t (y)-t (y)) + 0.

Proof. We easily establish that

(7.84) -~v’~ (t~,,,(y)_ t (y))( .5. cf ~~~~~”~~g~~s A y)..g#(s A y)fI$’ (s)(ds

+ 21R 3 1 + 21R 14 1.

By the methods of the proof of Lemma 10 we establish

1 1

- - - - — •~~~~ - ~~~~~~~- - ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ I I -



¶ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
- -

(7.85) /~ lg
#(s)_g#(s)~ Isup{/n lg~(- r)-g(t)~; 0 

~~~
t ~ s

- - I < MB(s)q(s)sup{/~ IY~(t)_tI/q(s); 0 
~ 

< s}.

Now for 1/n < s ~s. ( rm-l) /n

sup{v’~ Ii~(t)_tI/q(s) ; 0 
~~ 

t 
~ 

s}

(7.86) < sup{V~ Ii~(t)_tI/q (1/n); 0 < t I

= l/ (q( 1/n )v’~ ) + 0 as n + ~

by (6.6). From Lemma 9 we have + 0 and IR~4I + 0 as n ÷ and

we know that J~~~~~”B(s A y)q(s A y)D(s)ds < so that (7.83) follows.1/n

‘oflar v 5: Let 1L (~~) = vI~ {T~(~ )-t (y)). Then for y in (0,1], Theorems

2 to 4 hold with Y (y) in place of T (y).

Proof. Recall T (y) In (Tn
(y)_ t

n(Y)) and use Lemma 10.
! - r I

4

— • -- ‘~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~ 
-
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8. DISCUSSION AND EXAMPLES

We return to the bundle example of section 2 where L1(t) = L > 0 and n was

taken as infinite. We consider the failure behavior in light of the asymptotic

result s of the previous section . When the shape function ~‘ was of (1.4) we

found ~-l and g to be given by (2 . 5)  and (2.13) respectively. Examining

aç’(x ,~) / a~ for x > 0, in view of requirement A5,we find b1 = 1/2 and b2 = 1+6

suffice in the bounding functions B and D. Thus,for the power law breakdown

rule of (1.3) we have 4?(y) given by (2.9) and p > 1/2 is required to satisfy

requirement B2 (whereas the finiteness of t~ (l) only required p > 0) .  In

applications , p > 1 is almost always the case. We also find 3’V (x ,y)/9x easily

satisfies A6 and in fact, all the technical assumptions are satisfied when

= Now when L < L we have the Case I satuation. The time to failure

T
[ +1] 

of the positive fraction y of fibers in the bundle has the following

character. When 0 < y < 4 we find t~ (y) = 0 and a
2
(y) = 0 so that f (y) =

/~~T[~~~1] 
converges to zero in probability . This is consistent with the

infinite bundle interpretation. Now for y = 4 > 0 we have t~(4) = 0 again.

However T (4) = ~ci T
[~~

#~1] 
is asymptotically normal but with the probability

on the negative time axis moved to time zero. Also,a2(y1) is positive. Of

course this result is consistent with ~~~~~~ > 0 but we may interpret the

result further. Upon application of the load L on a large finite bundle the

actual fraction to fail may be slightly less than 4 in which case a small
amount of time is required for the failed fraction to reach 4. On the other

hand if the failed fraction exceeds 4 initially (with probability approaching
1/2 as n ÷ co) then T[~~#÷l] 

is automatically zero. Note that T
[~~#+1] 

÷0

as n + ~~~~. Now when 4 < y < 4 we find asymptotic normality of
4 T

n 
(~) = & (T

[ ny+l] 
- t~ (y)) and T( ny+1 • t~ (y) as n + ~°. But when 4 ~~~ 

y < 1

• we find that t~(y) = t~(4) = t~,(l) and a2(y) = a2(y#) a~(l) Thus T
[~~~1]
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and T (1) = T are both asymptotically normal with the same mean t~(i) and the

same variance ci2 ( l) .  This is consistent with the infinite bundle concept that
• 

4 was the collapse fraction and the remaining fraction 1 - 4 fails instantaneous-

ly when 4 is reached. When L = L we have the Case II situation with t~ (y) = 0

on (0 ,1]. For 0 < y < 4 = 4 we find v’ T1~~~ 11 ÷ 0 in probability but when

4 < y < 1, we find that vc T [~~ +1] is asymptotically normal (t~~(y~ ) = 0,

a2 (y # ) > o) but with the probability on the negative time axis moved to time zero.

• Also ~~ T (l) has the same asymptotic distribution as c T[~~ ÷1] for 4 5. < 1.

This is consistent with Daniels’ asymptotic result for classic bundle strength.
*Recall that the initial bundle strength was asymptotically normal with mean L

*
and variance which decreased as l/&. Hence upon application of L = L the

initial strength may be exceeded (with probability approaching 1/2 as n ÷ ~°)

in which case the bundle collapses immediately , or it s initial strength may

exceed L in which case a small amount of time will be ‘required for collapse

- - 
to occur. Finally for L > L we obtain I~ T[ny+lI •~

O for 0 < y < 1 and

(1) + 0  as nn p

These general features carry over to many other practical examples of

the shape function. The assumptions listed in Section 6 are not restrictive.
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